

The Impact of Governance Choice on Performance – An Application to the German Water Distribution Sector

Presentation at the 13th Annual ISNIE Conference June 18-20, Berkeley

Sophia Ruester and Michael Zschille **EE2**

Chair of Energy Economics and Public Sector Management

Introduction

- Intensive discussion about the optimal level of private involvement in the provision of traditional public services
- We would expect higher overall performance and lower consumer prices where a private partner is involved in service provision

In the German water production and distribution sector we observe:

- Widely varying retail prices
- A broad range of governance structures, among them private sector participation and public-private partnerships
- There exists a huge body of theoretical literature discussing advantages and disadvantages of PPPs

Agenda

- 1. Introduction
- 2. Industry Context
 - i. The German water distribution sector
 - ii. Working hypotheses
- 3. Data and Methodology
- 4. First Estimation Results and Conclusions

Literature

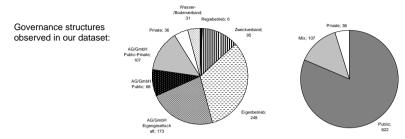
Backup

-2· **EE2**

Introduction II

- Existing literature evaluating the performance of water utilities is mainly based on efficiency analysis (e.g. Bhattacharyya et al. 1995; Estache and Kouassi 2002)
- Only a very limited number of studies accounts for the "self-selection" of managers into a strategy (see e.g. Chong et al. 2006; Carpentier et al. 2006)

Our contribution to the literature:


 Empirical analysis investigating the impact of governance choice on firm performance using a database of 765 German water suppliers correcting for potential self-selection (Heckman model)

Main findings:

- Consumer prices are higher under PSP
- Technical and structural characteristics cannot explain the whole variation
- · There seems to be self-selection only into one strategy

Industry Context

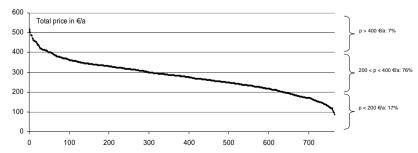
- · Local public authorities traditionally are responsible for water supply
- · Regulation differs by federal state; decentralized decision making
- Various governance structures (26% PSP, 74% public service provision)

- ~ 6,500 utilities supply water to 81.6 million inhabitants in > 13,000 municipalities
- TPA not enforceable under current legislation

E

EE²

Dataset


Unit of analysis:

- 5 -

• Water supply company in 2003, 765 observations

Endogenous variables:

- Governance structure: DPRIVATE (1 under PSP and zero otherwise)
- Consumer price for a representative household: PRICE (excluding taxes)

Working Hypotheses

Organizational form:

 Proposition 1: The participation of private companies in the operation of water supply should lead to an increase in overall performance due to the realization of economizing potential under competitive pressure: hence, we expect lower retail prices under PSP.

Scale economies:

 Proposition 2: Scale economies should lead to higher firm performance values which should mirror in lower retail prices.

Technological and structural characteristics:

- Proposition 3a: The higher the share of underground water in the supply portfolio of the company, the lower should be the retail price.
- *Proposition 3b:* The higher the quality of the network, the lower should be the retail price.
- *Proposition 3c:* The higher the dependence on imports, the higher should be the retail price.

-6- **EE**2

Variables

Characteristic	Denotation	Unit	Mean	Min	Max	N

EE²

Variables

Characteristic	Denotation	Unit	Mean	Min	Max	N
Retail price for a representative household consuming 150 m³/a	PRICE	€a	279.13	88.20	517.20	765
Governance form: dummy equaling one for private sector participation	DPRIVATE	Dummy	0.180	0	1	765
Percentage of water sales to household customers (versus industry)	SALESHH	%	0.831	0	1	765
Population supplied	POP	In 1000	53.72	1	3416	765
Dummy equaling one for cities with more than 500,000 inhabitants	DCITY	Dummy	0.013	0	1	765
Network density: ratio of population supplied over network length	DENSITY	POP/km	159.47	17.09	478.01	765
Percentage of water production from underground sources	UNDERGROUND	%	0.593	0	1	765
Count index for the number of treatment steps before distribution	TREAT	Ordinal	1.083	0	4	654
Leak ratio: (total input – total sales) / total input	LEAK	%	0.114	0	0.429	765
Import dependence: percentage of water imports from third producers	IMPORTDEP	%	0.276	0	1	765
Dummy for suppliers in the Eastern part of Germany	DEAST	Dummy	0.148	0	1	765
Dummy for suppliers only supplying water (i.e. no sanitation or other services)	DWATER	Dummy	0.225	0	1	765

Estimation Model

• First regression: Simple OLS

 $PRICE_{i} = \beta_{0} + \alpha DPRIVATE_{i} + \beta_{1}SALESHH_{i} + \beta_{2}POP_{i} + \beta_{3}POP_{i}^{2} + \beta_{4}DCITY_{i} + \beta_{5}DENSITY_{i} + \beta_{6}UNDERGROUND_{i} + \beta_{7}TREAT_{i} + \beta_{8}LEAK_{i} + \beta_{0}IMPORTDEP_{i} + \beta_{10}DEAST_{i} + \varepsilon_{i}$

• Second regression: Switching regression model (Heckman model)

 $DPRIVATE_{i} = \delta_{0} + \delta_{1}SALESHH_{i} + \delta_{2}POP_{i} + \delta_{3}POP_{i}^{2} + \delta_{4}DCITY_{i} + \delta_{5}DENSITY_{i} + \delta_{5}UNDERGROUND_{i} + \delta_{7}TREAT_{i} + \delta_{8}LEAK_{i} + \delta_{0}IMPORTDEP_{i} + \delta_{10}DEAST_{i} + \gamma DWATER_{i} + v_{i}$

$$\begin{split} PRICE_{i}^{1} &= \beta_{0}^{1} + \beta_{1}^{1}SALESHH_{i} + \beta_{2}^{1}POP_{i} + \beta_{3}^{1}POP_{i}^{2} + \beta_{4}^{1}DCITY_{i} + \beta_{5}^{1}DENSITY_{i} \\ &+ \beta_{6}^{1}UNDERGROUND_{i} + \beta_{7}^{1}TREAT_{i} + \beta_{8}^{1}LEAK_{i} + \beta_{9}^{1}IMPORTDEP_{i} + \beta_{10}^{1}DEAST_{i} - \sigma_{u}^{1}\lambda^{1} + e_{i}^{1}A^{2} + e$$

$$\begin{split} PRICE_{i}^{0} &= \beta_{0}^{0} + \beta_{1}^{0}SALESHH_{i} + \beta_{2}^{0}POP_{i} + \beta_{3}^{0}POP_{i}^{2} + \beta_{4}^{0}DCITY_{i} + \beta_{5}^{0}DENSITY_{i} \\ &+ \beta_{6}^{0}UNDERGROUND_{i} + \beta_{7}^{0}TREAT_{i} + \beta_{8}^{0}LEAK_{i} + \beta_{9}^{0}IMPORTDEP_{i} + \beta_{10}^{0}DEAST_{i} + \sigma_{u}^{0}\lambda^{0} + e_{i}^{0} \end{split}$$

Methodology

• First regression: Simple OLS

$$PRICE_i = \alpha G_i + \beta X_i + \varepsilon_i$$

- If there is self-selection, the governance form is an endogenous variable
- Second regression: Switching regression model (Heckman model)

$$G_i^* = \delta\!X_i + \gamma\!Z_i + v_i \qquad \qquad \text{with} \quad G_i = 1 \quad \text{if} \quad G_i^* > 0 \quad \text{and zero otherwise}$$

$$\begin{split} &\lambda_{i}^{1} = \phi \big[\delta X_{i} + \gamma Z_{i}\big]/\Phi \big[\delta X_{i} + \gamma Z_{i}\big] \\ &\lambda_{i}^{0} = \phi \big[\delta X_{i} + \gamma Z_{i}\big]/\big(1 - \Phi \big[\delta X_{i} + \gamma Z_{i}\big]\big) \end{split}$$

$$\begin{aligned} PRICE_{i}^{1} &= \beta^{1} X_{i} - \sigma_{u}^{1} \phi \left[\hat{\delta} X_{i} + \hat{\gamma} Z_{i} \right] / \Phi \left[\hat{\delta} X_{i} + \hat{\gamma} Z_{i} \right] + e_{i}^{1} \\ PRICE_{i}^{0} &= \beta^{0} X_{i} + \sigma_{u}^{0} \phi \left[\hat{\delta} X_{i} + \hat{\gamma} Z_{i} \right] / \left(1 - \Phi \left[\hat{\delta} X_{i} + \hat{\gamma} Z_{i} \right] \right) + e_{i}^{0} \end{aligned}$$

- 10 -

p-value Chi sqrt.

EE2

RI	CE	Simple OLS Mode
	Model 3	
*	221.47***	
	(19.50)	 PSP results in high

- PSP results in higher consumer prices for all specifications: Controlling for potential scale economies, technical and structural characteristics etc. we find that consumers pay 18.40 €/a more under PSP
- Scale economies (SALESHH, DCITY) result in lower prices
- Market size (POP) has a positive and decreasing, but negligible effect on price
- Counterintuitive result for DENSITY
- Cost advantages (UNDERGROUND) as well as cost disadvantages (LEAK, TREAT) are mirrored in consumer prices
- Dependence on imports no significant impact
- Water prices in the Eastern countries (DEAST) are significantly higher than in the Western part of Germany

CONSTANTE 273.39 ** 219.56** (3.09)(16.83)DPRIVATE 31.77*** 22.79 *** 18.40*** (7.28)(7.31)33.71 * 21.02% SALESHH (16.85) 0.19** 0.15*** (0.06)(0.06)-0.00*** -0.00** POP squared (0.00)(0.00) DCITY -42.89 -62 57 8 (39.10)(35.47)0.12*** 6.09** DENSITY (0.04) (0.04) -64.57*** UNDERGROUND (10.97) TREAT 10.93 ** (4.45)155.29 *** (38.69) IMPORTDEP 55.53 *** DEAST (7.57)DWATER Adjusted R 0.02 0.07 0.35 Pseudo R2 0.000 0.000 0.000

Model 1

EE2

Specification	Probit (Governance Ch	oice	
	Dep. var.: DPRIVATE			
	Model 1	Model 2	Model 3	
CONSTANTE	-0.798*** (0.058)	-1.262*** (0.344)	-1.260 *** (0.467)	
DPRIVATE				
SALESHH		-0.179 (0.386)	-0.098 (0.417)	
POP		0.003 * (0.001)	0.003 (0.002)	
POP squared		-0.000 (0.000)	-0.000 (0.000)	
DCITY		0.004 (0.825)	-0.259 (0.869)	
DENSITY		0.003 *** (0.001)	0.003 *** (0.001)	
UNDERGROUND			-0.251 - (0.254)	
TREAT			0.111+ (0.100)	
LEAK			-0.141 (0.952)	
IMPORTDEP			0.032 (0.291)	
DEAST			0.015 (0.179)	
DWATER	-0.680*** (0:156)	-0.544 *** (0.161)	-0.526*** (0.180)	
Adjusted R ²				
Pseudo R ²	0.03	0.07	0.08	
p-value Fstat.				
p-value Chi sqrt.	0.000	0.000	0.000	
N	765	765	654	

- 15 -

Switching Regression Model

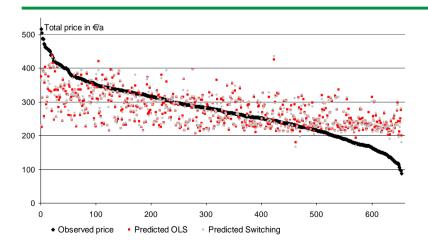
1st stage:

Probit model explaining governance choice

- Instrumental variable (DWATER) indicates that pure water companies typically remain under public control
- Need for further efforts to improve this model
 - Very low explanatory power of the model
 - Asymmetric predictive power:

	Subsample (654 observations including TREAT)		
$D_hat_i = k$ and $D_i = k$	534 (82%)		
$D_hat_i = 1$ and $D_i = 1$	6 (5%)		
$\mathrm{D_hat}_i = 0$ and $\mathrm{D}_i = 0$	528 (99%)		
	Suosampie (654 observations including TREAT)		
$D_{hat_i} = k$ and $D_i = k$	534 (82%)		
$D_hat_i = 1$ and $D_i = 1$	6 (5%)		
	528 (99%)		

Specification	Switching Regression A Dep. var.: PRICE (DPRIVATE = 1)		Switching Regression B Dep. var.: PRICE (DPRIVATE = 0)		
	Model 3	Model 3b (without TREAT)	Model 3	Model 3b (without TREAT)	
CONSTANTE	592.86***	561.89***	57.76	45.31	
	(218.26)	(195.17)	(72.64)	(66.18)	
SALESHH	-20.92	9.35	54.18***	64.80***	
	(39.13)	(37.14)	(18.98)	(18.04)	
POP	0.16	0.20	0.11	0.12*	
	(0.25)	(0.23)	(0.07)	(0.07)	
POP squared	-0.00	-0.00	-0.00	-0.00	
	(0.00)	(0.00)	(0.00)	(0.00)	
DCITY	48.03	35.35	-34.07	-45.33	
	(81.01)	(75.98)	(49.22)	(46.95)	
DENSITY	-0.14	-0.11	-0.01	-0.04	
	(0.16)	(0.15)	(0.07)	(0.06)	
UNDERGROUND	-49.56*	-58.09 **	-53.32***	-61.41***	
	(28.08)	(24.56)	(12.83)	(10.84)	
TREAT	8.34 (10.66)		5.31 (5.31)		
LEAK	203.21*	184.32 *	158.51***	138.31***	
	(102.56)	(98.44)	(42.39)	(39.10)	
IMPORTDEP	22.48	6.85	18.70	5.18	
	(29.48)	(23.43)	(14.47)	(11.79)	
DEAST	35.65**	34.96 **	56.61 ***	58.99 ***	
	(16.71)	(15.42)	(8.63)	(7.92)	
LAMBDA	-413.79	-380.65	176.96**	205.83 ***	
	(286.67)	(265.22)	(81.83)	(72.66)	
Adjusted R ²	0.36	0.32	0.33	0.32	
p-value Fstat.	0.000	0.000	0.000	0.000	
N	119	138	535	627	


Switching Regression Model

2nd stage

- Inverse Mills ratio indicates a positive selection only in strategy "public" (i.e. DPRIVATE = 0)
- Estimation results loose in statistical significance as compared to the simple OLS model
- → There seems to be no endogeneity problem

Predicted versus Observed Prices

 The models predict mainly prices in the middle range; peak values cannot be explained by structural and/or technical characteristics

Conclusions

- This paper investigates the impact of governance structure on firm performance (i.e. consumer prices)
- Simple OLS model as well as a switching regression model accounting for the possible endogeneity of governance choice
- Controlling for scale economies as well as technical and structural characteristics of the suppliers we find that consumer prices are significantly higher under private sector participation
- Is there functioning competition for the market?

Need for further research

- Improvement of the econometric analysis
- Similar analysis with alternative performance measures (such as revenues or technical efficiency scores)

EE2

Thank you very much for your attention! Any questions or comments?

Chair of Energy Economics and Public Sector Management

Backup – Switching Regression Model

Assume that strategic decisions are endogenous to their expected performance outcomes

Model setup:

- Binary set of strategies $S = (S^0, S^1)$ resulting in a binary set of performance outcomes $\pi = (\pi^0, \pi^1)$
- What would have been the performance level if the alternative governance form had been chosen (= "strategy effect")?
- We do not observe neither $E(\pi^0|S^1)$ nor $E(\pi^1|S^0)$

Heckman Model

 Organizational choice is modeled as a continuous latent variable S* and depends i) on the expected performance difference, ii) on exogenous variables Z affecting organizational choice but not the performance outcome, and iii) on some unobserved factors:

$$S_i^* = \gamma \left(\pi_i^1 - \pi_i^0\right) + \delta Z_i + \theta_i$$
 with $S_i = 1$ if $S_i^* > 0$ and zero otherwise

Selected References

- Bhattacharyya A., T.R. Harris, R. Narayanan, and K. Raffiee (1995): Specification and Estimation of the Effect of Ownership on the Economic Efficiency of the Water Utilities, Regional Science and Urban Economics, Vol. 25, pp. 759-84.
- Bundesministerium für Wirtschaft und Arbeit (BMWA) (2005): Wasserleitfaden. Leitfaden zur Herausbildung leistungsstarker kommunaler und gemischtwirtschaftlicher Unternehmen der Wasserver- und Abwasserentsorgung. Dokumentation Nr. 547.
- Bundesverband der Energie- und Wasserwirtschaft (BDEW) (2008): Branchenbild der deutschen Wasserwirtschaft, wvgw Wirtschaftsund Verlagsgesellschaft Gas und Wasser mbH, Bonn.
- Bundesverband der Gas- und Wasserwirtschaft e.V. (BGW) (2005a): 115. Wasserstatistik 2003 Bundesrepublik Deutschland, wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn.
- Bundesverband der Gas- und Wasserwirtschaft e.V. (BGW) (2005b): Wassertarife 2005, wvgw Wirtschafts- und Verlagsgesellschaft Gas und Wasser mbH, Bonn.
- Carpentier, A., C. Nauges, A. Reynaud, and A. Thomas (2006): Effets de la délégation sur le prix de l'eau potable en France Une analyse à partir de la littérature sur les « effets de traitement ». Economie et Prévision, 2006-3, No. 174, pp 1-20.
- Chong E., F. Huet, S. Saussier, and F. Steiner (2006): Public-Private Partnerships and Prices: Evidence From Water Distribution in France, Review of Industrial Organization, Vol. 29, No. 1-2, pp. 149-69.
- Demsetz, H. (1968): Why Regulate Utilities? Journal of Law and Economics, Vol. 11, No.1, pp. 55-66.
- Estache A. and E. Kouassi (2002): Sector Organization, Governance and the Inefficiency of African Water Utilities, World Bank Policy Research Working Paper, No. 3374.
- García-Sánchez, I.M. (2006): Efficiency Measurement in Spanish Local Government: The Case of Municipal Water Services, Review of Policy Research, Vol. 23, pp. 355-71.
- Guash J.L., J-J. Laffont, and S. Straub (2008): Renegotiation of Concession Contracts in Latin America, International Journal of Industrial Organization; Vol. 26, No. 2, pp. 421-42.
- Hamilton, B.H. and J.A. Nickerson (2003): Correcting for Endogeneity in Strategic Management Research, Strategic Organization, Vol. 1, No. 1, pp. 51-78.
- Hart, O.D., A. Shleifer, and R.W. Vishny (1997): The Proper Scope of Government: Theory and Application to Prisons. Quarterly Journal of Economics, Vol. 112, No. 4, pp. 1127-1161.
- Hirschhausen C.v., A. Cullmann, M. Walter, R. Wand, and M. Zschille (2008): Quo Vadis Efficiency Analysis of Water Distribution? A
 Comparative Literature Review, Efficiency Analysis Working Papers WP-EA-18, Dresden University of Technology.
- Renzetti S., Dupont D. (2003): Ownership and Performance of Water Utilities. Working Paper, Brock University, Department of Economics, Canada.
- Williamson, O.E. (1976): Franchise Bidding for Natural Monopolies In General and with Respect to CATV. Bell Journal of Economics, Vol. 7, No. 1, pp. 73-104.

Backup – Switching Regression Model II

 Since we only observe the performance outcome under the chosen alternative, we substitute the performance levels described above and get the reduced form model:

$$S_i^* = X_i \beta + Z_i \delta + \beta_i$$
 with $\theta_i = \gamma (e_i^1 - e_i^0) + \theta_i$ and $\beta = \gamma (\beta^1 - \beta^0)$

• Under the assumption of $\,arepsilon_i^1,\, arepsilon_i^0$ and $\,artheta_i^{}$ being jointly normally distributed Heckman showed that

$$E(e_i^1|S^1) = E(e_i^1|S^* > 0) = -\sigma_u^1 \phi[X_i \beta + Z_i \delta] / \Phi[X_i \beta + Z_i \delta] = -\sigma_u^1 \lambda_i^1$$

$$E(e_i^0|S^0) = E(e_i^0|S^* \le 0) = \sigma_u^0 \phi[X_i \beta + Z_i \delta] / (1 - \Phi[X_i \beta + Z_i \delta]) = \sigma_u^0 \lambda_i^0$$

- Estimation procedure:
 - Estimation of the reduced form model;
 - Calculation of the inverse Mills ratios;
 - Estimation of the sample-selection corrected performance equations (standard OLS)

$$\pi_{i}^{1} = \beta^{1} X_{i} - \sigma_{u}^{1} \phi \left[X_{i} \hat{\beta} + Z_{i} \hat{\delta} \right] / \Phi \left[X_{i} \hat{\beta} + Z_{i} \hat{\delta} \right] + e_{i}^{1}$$

$$\pi_{i}^{0} = \beta^{0} X_{i} + \sigma_{u}^{0} \phi \left[X_{i} \hat{\beta} + Z_{i} \hat{\delta} \right] / \left(1 - \Phi \left[X_{i} \hat{\beta} + Z_{i} \hat{\delta} \right] \right) + e_{i}^{0}$$