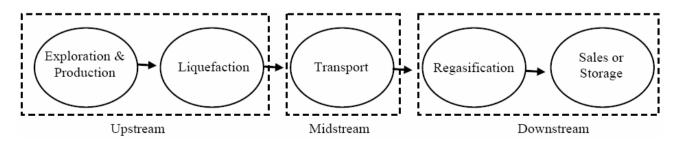


Changing Contract Structures in the International Liquefied Natural Gas Market: A First Empirical Analysis

Sophia Ruester

Gas PhD Day

May 28, 2010


Agenda

- 1. Introduction
- 2. Theoretical Framework
 - i. Trade-off between the costs of repeated negotiation and the hazard of being bound to an inflexible agreement
 - ii. The impact of transaction frequency on governance choice
- 3. Data and Methodology
- 4. First Results and Conclusions

Literature & Backup

Introduction

- Future role of long-term contracts in energy sectors intensively debated
- Changing structure of natural gas markets:
 - Globalization
 - Downstream restructuring
 - Long-term contracts increasingly accompanied by short-term agreements
- Liquefied natural gas (LNG) industry:
 - Very dynamic market
 - Changing contract structures
 - Value chain:

Paper Related to Existing Literature

Selected empirical studies on LTCs in the energy sector [selected results]

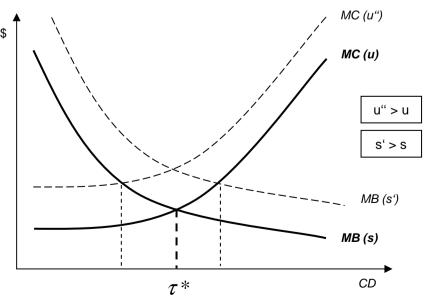
- Joskow (1985, 1987): Longer contracts in the presence of specific investments
- Crocker/Masten (1988): Confirm trade-off between costs of repeated bargaining in presence of specific investments and hazard of being bound in inflexible agreement
- Saussier (1999, 2000): CD (resp. completeness) increases with level of quasi rents at stake and decreases with level of uncertainty
- Kerkvliet/Shogren (2001): CD decreases with rising trading experience
- Neuhoff/Hirschhausen (2005): LTCs diminish in importance with increasing downstream competition
- Hirschhausen/Neumann (2008): CD decreases as market structure evolves to more competitive regimes

This paper

- Empirical assessment of <u>LNG supply contracts</u>' optimal contract duration
 - → <u>Trade-off</u> between the minimization of transaction costs due to repeated bilateral bargaining and the risk of being bound in an inflexible agreement
- Adds to discussion an analysis of different <u>dimensions of transaction frequency</u> and their impact on governance choice

Theoretical Framework I

Optimal Contract Duration: A Trade-Off


Trade-off between the costs of repeated negotiation and the hazard of being bound to an inflexible agreement:

- \bullet Optimal CD $\,\tau^{\,*}\,$ equates marginal costs $\it MC$ and marginal benefits $\it MB$ of contracting
- MC of being bound in the contract depend mainly on the level of uncertainty u
 and increase with CD
- MB of avoiding repeated negotiation depend mainly on the level of specific investments s and decrease with CD

$$MB(\tau^*) = MB(\tau, s, v) = \alpha_0 + \alpha_1 \tau + \alpha_2 s + v$$
$$MC(\tau^*) = MC(\tau, u, \omega) = \beta_0 + \beta_1 \tau + \beta_2 u + \omega$$

$$\tau^* = \gamma_0 + \gamma_1 s - \gamma_2 u + \varepsilon$$

with
$$\gamma_0 = \frac{\alpha_0 - \beta_0}{\beta_1 - \alpha_1}$$
, $\gamma_1 = \frac{\alpha_2}{\beta_1 - \alpha_1}$, $\gamma_2 = \frac{\beta_2}{\beta_1 - \alpha_1}$, $\varepsilon = \frac{\nu - \omega}{\beta_1 - \alpha_1}$

Working Hypothesis

- Proposition 1a: Contract duration increases with the level of investments in idiosyncratic assets in order to avoid repeated bilateral bargaining and mitigate the vulnerability to ex-post holdup.
- Proposition 1b: Higher environmental uncertainty reduces contract duration in order to minimize the risk of being bound by a long-term commitment that no longer reflects market realities.

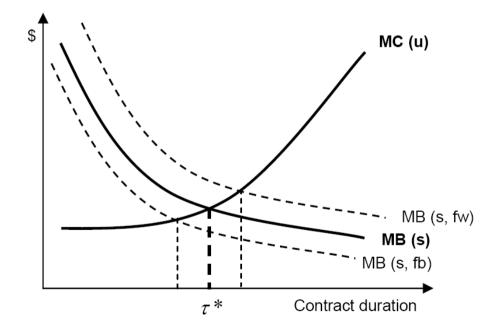
Theoretical Framework II

Hypotheses on the Impact of Transaction Frequency

High frequency may lead to more "firm-like" governance forms:

- TCE argues that transaction costs increase with transaction frequency f due to repeated bargaining and the repeated hazard of opportunistic behavior
- Williamson (1985): High frequency results furthermore in a greater potential for internal specialization and for exploiting scale economies

High frequency may lead to more "market-like" governance forms:

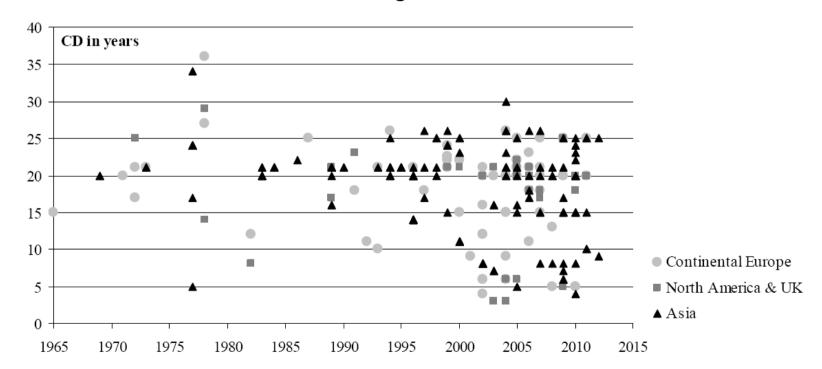

 Decreasing transaction costs due to learning processes, developing routines and reputational effects (e.g. Milgrom/Roberts, 1992; Langlois, 1992; Garvey, 1995)

Theoretical Framework II

Hypotheses on the Impact of Transaction Frequency

These are <u>complementary</u> perspectives:

- → Within the relationship versus between the trading partners:
- •With increasing 'within frequency' (*fw*) the benefits of contracting will rise due to the repeated hazard of opportunistic bargaining
- •With increasing 'between frequency' (fb) the benefits of contracting will fall due to lower ex-ante as well as ex-post transaction costs


$$\tau^* = \gamma_0 + \gamma_1 s - \gamma_2 u + \gamma_3 f w - \gamma_4 f b + \varepsilon$$

Working Hypothesis

- Proposition 1a: Contract duration increases with the level of investments in idiosyncratic assets in order to avoid repeated bilateral bargaining and mitigate the vulnerability to ex-post holdup.
- Proposition 1b: Higher environmental uncertainty reduces contract duration in order to minimize the risk of being bound by a long-term commitment that no longer reflects market realities.
- Proposition 2a: Contract duration increases with the level of frequency of the transactions within the trading relationship in order to avoid the repeated hazard of post-contractual opportunism by the non-investing party.
- Proposition 2b: Contract duration decreases with the frequency of transactions between the same trading partners due to learning and reputational effects.

Dataset

- Global dataset, compiled from various publicly available information
- Unit of analysis: LNG supply contract concluded between upstream seller and downstream buyer (261 observations)
- Transactions are defined as cargo deliveries of LNG

Exogenous Variables

Characteristic	Proxy	Unit	Denotation	Exp. Sign	Mean	Std. Dev.	Min	Max	N
	Propos	itions 1a an	d 1b						
Relationship specificity	Ratio to which the contract exploits the nominal capacity of the import terminal	%	RCAPSHARE	+	0.214	0.245	0.002	1	261
External uncertainty and need for flexibility	Political instability in the supplying country		UNC	-	0.622	0.387	0	1	261
	Standard deviation of WTI crude oil spot price in the year before contract signature		STDEVOIL	-	3.778	2.733	0.874	12.853	224
	Start-up of deliveries after 1999	Dummy	D2000	-	0.598	0.491	0	1	261
	Propos	itions 2a an	d 2b						
Within frequency	Annual contracted volume	bcm/a	VOL	+	1.779	1.496	0.03	6.75	261
Between frequency	Cumulative number of contracts negotiated between the two parties	Count	BILEXP1	-	1.678	1.239	1	9	261
	Cumulative number of years of trading relationship between the two parties	Count	BILEXP2	-	5.755	8.151	1	31	261
	Contract representing a contract renewal	Dummy	RENEW	-	0.134	0.341	0	1	261
	Con	trol variabl	es						
Dependence on LNG imports	LNG share in total natural gas imports	%	LNGSHARE	+	0.718	0.376	0.03	1	261
Downstream competition	Contract dedicated to competitive downstream market (i.e., US from 1992; UK from 1997)	Dummy	COMP	-	0.126	0.333	0	1	261
	I	nstruments							
Self-sufficiency import country	Domestic production / total consumption	%	SELFSUFF		0.202	0.367	0	1	261
Import terminal capacity	Nominal capacity of regasification terminal	bcm/a	CAP		18.076	18.164	0.21	75	261
Number of import terminals	Number of import terminals in import country	Count	TERMINALS		10.126	9.635	1	29	261
Atlantic Basin value chain	Contract destined to Atlantic Basin customers	Year	ATLANTIC		0.411	0.493	0	1	261

Methodology

Contract duration as dependent variable:

$$CD_{i} = \phi_{0} + \phi_{1}RCAPSHARE_{i} + \phi_{2}UNC_{i} + \phi_{3}STDEVOIL_{i} + \phi_{4}D2000$$
$$+ \phi_{5}VOL_{i} + \phi_{6}BETWFREQ_{i} + \phi_{7}LNGSHARE_{i} + \phi_{8}COMP_{i} + \varsigma_{i}$$

 However, contracted volume and CD are determined simultaneously, therefore we estimate the model applying two-stage least squares (2SLS)

$$\begin{split} VOL_{i} &= \theta_{0} + \theta_{1}RCAPSHARE_{i} + \theta_{2}UNC_{i} + \theta_{3}STDEVOIL_{i} + \theta_{4}D2000 \\ &+ \theta_{5}BETWFREQ_{i} + \theta_{6}LNGSHARE_{i} + \theta_{7}COMP_{i} + \theta_{8}SELFSUFF_{i} \\ &+ \theta_{9}CAP_{i} + \theta_{10}TERMINALS_{i} + \xi_{i} \end{split}$$

Estimation Results

Specification	OLS			2SLS			System GMM		
	(VOL as exogenous variable)			(VOL as endogenous variable)			(VOL as endogenous variable)		
	Model A	Model B	Model C	Model A	Model B	Model C	Model A	Model B	Model C
CONSTANT	18.98 ***	18.67 ***	18.45 ***	19.59 ***	19.17 ***	19.05 ***	19.69 ***	19.29 ***	18.99 ***
	(1.60)	(1.58)	(1.52)	(1.68)	(1.66)	(1.60)	(1.53)	(1.51)	(1.54)
RCAPSHARE	3.52 *	3.24 *	3.29 *	5.69 **	5.18 **	5.64 **	5.64 **	5.02 **	5.50 **
	(1.85)	(1.85)	(1.77)	(2.51)	(2.54)	(2.44)	(2.37)	(2.38)	(2.30)
UNC	-0.36	-0.37	-0.23	-0.29	-0.32	-0.18	-0.41	-0.50	-0.35
	(0.97)	(0.97)	(0.94)	(0.98)	(0.98)	(0.95)	(1.00)	(0.99)	(0.93)
STDEVOIL	-0.24 *	-0.25 *	-0.23 *	-0.24 *	-0.25 *	-0.24 *	-0.22	-0.23	-0.22
	(0.14)	(0.14)	(0.13)	(0.14)	(0.14)	(0.14)	(0.16)	(0.16)	(0.15)
D2000	-2.67 ***	-2.81 ***	-2.70 ***	-2.47 ***	-2.63 ***	-2.49 ***	-2.45 ***	-2.63 ***	-2.42 ***
	(0.86)	(0.86)	(0.83)	(0.89)	(0.88)	(0.86)	(0.75)	(0.74)	(0.74)
VOL	0.72 ** (0.29)	0,80 *** (0.29)	0.92 ***	0.05 (0.59)	0.22 (0.59)	0.22 (0.57)	0.08 (0.57)	0.28 (0.56)	0.28 (0.56)
ln(BILEXP1)	-2.77 *** (0.70)			-2.77 *** (0.71)			-2.83 *** (0.68)		
ln(BILEXP2)		-1.23 *** (0.29)			-1.19 *** (0.30)			-1.23 *** (0.29)	
RENEW			-5.63 *** (0.97)			-5.33 *** (1.01)			-5.53 *** (0.85)
LNGSHARE	1.76	2.41 *	1.83	1.68	2.32 *	1.73	1.57	2.19 *	1.70
	(1.27)	(1.28)	(1.23)	(1.29)	(1.30)	(1.25)	(1.15)	(1.14)	(1.18)
COMP	-2.70 **	-2.35 *	-2.85 **	-2.93 **	-2.54 *	-3.05 **	-3.14 **	-2.75 **	-3.20 **
	(1.30)	(1.29)	(1.25)	(1.33)	(1.31)	(1.28)	(1.37)	(1.36)	(1.41)
Adjusted R ²	0.234	0.239	0.288	0.214	0.225	0.267			
Centered R ² N	224	224	224	224	224	224	0.243 224	0.255 224	0.296 224

- The more important the respective contract to the import terminal the longer CD
- CD decreases with the risk of being bound by an agreement that no longer reflects the actual market situation with respect to prices
- CD has decreased over time
- No statistical significant impact of VOL
- CD decreases with bilateral trading experience

Predicted Values

- Error terms do not follow a random scatter but rather depend on the observed contract duration
 - → Non-observable factors
 - → Contract provisions play an important role in real-world contracts
 - → Players often contract for a portfolio of supply agreements including large-scale LTCs and more flexible shorter-term contracts

Conclusions

- This paper provides an empirical study investigating the optimal contract duration of LNG supply contracts
 - Presence of high dedicated asset specificity results in longer contracts
 - Increasing need for flexibility in today's "2nd generation" LNG industry reduces contract duration
 - "Within" versus "between" perspective concerning transaction frequency
- Limitations (i.e. challenges for future research):
 - Ambiguous and non-significant results for uncertainty variables → external uncertainty should be split into different components
 - Contractual provisions interact, but: very limited data availability → simultaneous choice of contract provisions should be investigated
 - Test of reduced form equations only

Robert Schuman Centre for Advanced Studies Florence School of Regulation

Thank you very much for your attention

sophia.ruester@eui.eu

References (Selected)

- Aggarwal, Rimjhim M. (2007): Role of Risk Sharing and Transaction Costs in Contract Choice: Theory and Evidence from Groundwater Contracts. *Journal of Economic Behavior and Organization*, Vol. 63, No. 3, pp. 475-96.
- Crocker, Keith J. and Scott E. Masten (1988): Mitigating Contractual Hazards: Unilateral Options and Contract Length. RAND Journal of Economics, Vol. 19, No. 3, pp. 327-43.
- Gray, Jo Anna (1978): On Indexation and Contract Length. Journal of Political Economy, Vol. 86, No. 1, pp. 1-18.
- Grossman, Sanford J., and Oliver D. Hart (1986): The Costs and Benefits of Ownership: A Theory of Vertical and Lateral Integration. *Journal of Political Economy*, Vol. 94, No. 4, pp. 691-719.
- Heide, Jan B. and George John (1990): Alliances in Industrial Purchasing: The Determinants of Joint Action in Buyer-Supplier Relationships. *Journal of Marketing Research*, Vol. 17, No. 1, pp. 24-36.
- Henisz, Witold J. (2000): The Institutional Environment for Economic Growth. Economics and Politics, Vol. 12, No. 1, pp. 1-31.
- Hubbard, Glenn R. and Robert J. Weiner (1986): Regulation and Long-Term Contracting in US Natural Gas Markets. *Journal of Industrial Economics*, Vol. 15, No. 1, pp. 71-79.
- Joskow, Paul L. (1987): Contract Duration and Relationship-Specific Investments: Empirical Evidence from Coal Markets. *American Economic Review*, Vol. 77, No. 1, pp. 168-85.
- Kerkvliet, Joe and Jason F. Shogren (2001): The Determinants of Coal Contract Duration for the Powder River Basin. *Journal of Institutional and Theoretical Economics*, Vol. 157, No. 4, pp. 608-22.
- Klein, Saul (1989): A Transaction Cost Explanation of Vertical Control in International Markets. *Journal of the Academy of Marketing Science*, Vol. 17, No. 3, pp. 253-60.
- Klein, Benjamin, Robert G. Crawford, and Armen A. Alchian (1978): Vertical Integration, Appropriable Rents, and the Competitive Contracting Process. *Journal of Law and Economics*, Vol. 21, No. 4, pp. 297-326.
- Klein, Saul, Gary L. Frazier, and Victor J. Roth (1990): A Transaction Cost Analysis Model of Channel Integration in International Markets. *Journal of Marketing Research*, Vol. 17, No. 2, pp. 196-208.
- Langlois, Richard N. (1992): Transaction Cost Economics in Real Time. *Industrial and Corporate Change*, Vol. 1, No. 1, pp. 99-127.
- Milgrom, Paul and John Roberts (1992): Economics, Organization and Management. Prentice Hall, Englewood Cliffs, New Jersey.
- Ruester, Sophia and Anne Neumann (2006): Corporate Strategies along the LNG Value Added Chain An Empirical Analysis of the Determinants of Vertical Integration. Working Paper WP-GG-17, Dresden University of Technology.
- Saussier, Stéphane (2000): Transaction Costs and Contractual Incompleteness: The Case of Électricité de France. *Journal of Economic Behavior and Organization*, Vol. 42, No. 2, pp. 189-206.
- Williamson, Oliver E. (1975): Markets and Hierarchies: Analysis and Antitrust Implications. The Free Press, New York.
- Williamson, Oliver E. (1985): The Economic Institutions of Capitalism Firms, Market, Relational Contracting. The Free Press, New York.
- Yoder, Jonathan, Ishrat Hossain, Francis Epplin, and Damona Doye (2008): Contract duration and the division of labor in agricultural land leases. *Journal of Economic Behavior and Organization*, Vol. 65, No. 3-4, pp. 714-33.

Backup Estimation Results 1st Stage incl. STDEVOIL

Specification		2SLS		System GMM			
	Model A	Model B	Model C	Model A	Model B	Model C	
CONSTANT	0.38 (0.33)	0.38 (0.33)	0.38 (0.32)	0.38 (0.31)	0.38 (0.31)	0.38 (0.30)	
RCAPSHARE	4.04 ***	4.05 ***	4.04 ***	4.04 ***	4.05 ***	4.04 ***	
	(0.39)	(0.39)	(0.39)	(0.41)	(0.41)	(0.41)	
UNC	0.05	0.04	0.02	0.05	0.04	0.02	
	(0.20)	(0.20)	(0.20)	(0.17)	(0.17)	(0.17)	
STDEVOIL	-0.02	-0.02	-0.02	-0.02	-0.02	-0.02	
	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	(0.03)	
D2000	0.24	0.25	0.24	0.24	0.25	0.24	
	(0.18)	(0.18)	(0.18)	(0.19)	(0.19)	(0.18)	
ln(BILEXP1)	0.11 (0.15)			0.11 (0.13)			
ln(BILEXP2)		0.08 (0.06)			0.08 (0.06)		
RENEW			0.46 ** (0.21)			0.46 (0.22)	
LNGSHARE	-0.09	-0.10	-0.04	-0.09	-0.10	-0.04	
	(0.32)	(0.32)	(0.32)	(0.34)	(0.34)	(0.34)	
COMP	-0.29	-0.29	-0.23	-0.29	-0.29	-0.23	
	(0.32)	(0.33)	(0.33)	(0.29)	(0.29)	(0.30)	
SELFSUFF	0.23	0.23	0.21	0.23	0.23	0.21	
	(0.33)	(0.33)	(0.33)	(0.31)	(0.31)	(0.32)	
CAP	0.03 ***	0.03 ***	0.03 ***	0.03 ***	0.03 ***	0.03 ***	
	(0.004)	(0.004)	(0.005)	(0.01)	(0.01)	(0.01)	
TERMINALS	-0.02 **	-0.03 **	-0.03 **	-0.02 **	-0.03 **	-0.03 **	
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	
Adjusted R ²	0.466	0.469	0.477				
Centered R ²				0.490	0.493	0.500	
N	224	224	224	224	224	224	

Backup
Estimation Results 2nd Stage excl. STDEVOIL

Specification	OLS			2SLS			System GMM		
	(VOL as exogenous variable)			(VOL as endogenous variable)			(VOL as endogenous variable)		
	Model A	Model B	Model C	Model A	Model B	Model C	Model A	Model B	Model C
CONSTANT	17.73 ***	17.39 ***	17.16 ***	18.49 ***	18.05 ***	17.89 ***	18.44 ***	17.97 ***	17.66 ***
	(1.45)	(1.44)	(1.39)	(1.54)	(1.53)	(1.49)	(1.49)	(1.46)	(1.49)
RCAPSHARE	3.53 **	3.28 *	3.27 *	6.18 **	5.69 **	5.97 **	6.12 ***	5.52 **	5.87 ***
	(1.73)	(1.74)	(1.68)	(2.42)	(2.44)	(2.39)	(2.28)	(2.29)	(2.25)
UNC	0.28	0.18	0.21	0.31	0.20	0.23	0.26	0.10	0.16
	(0.90)	(0.90)	(0.88)	(0.92)	(0.91)	(0.89)	(0.92)	(0.91)	(0.87)
D2000	-3.02 ***	-3.06 ***	-2.84 ***	-2.87 ***	-2.94 ***	-2.72 ***	-2.87 ***	-2.94 ***	-2.66 ***
	(0.71)	(0.71)	(0.69)	(0.72)	(0.72)	(0.71)	(0.65)	(0.65)	(0.65)
VOL	0.67 **	0.72 ***	0.82 ***	-0.10	0.03	0.04	-0.07	0.11	0.12
	(0.27)	(0.27)	(0.26)	(0.56)	(0.56)	(0.54)	(0.53)	(0.53)	(0.53)
ln(BILEXP1)	-2.92 *** (0.66)			-2.90 *** (0.67)			-2.92 *** (0.65)		
ln(BILEXP2)		-1.24 *** (0.28)			-1.20 *** (0.28)			-1.22 *** (0.28)	
RENEW			-5.61 *** (0.98)			-5.32 *** (1.00)			-5.43 *** (0.89)
LNGSHARE	2.11 *	2.64 **	2.17 *	2.07 *	2.59 **	2.13 *	2.11 *	2.67 **	2.30 **
	(1.16)	(1.16)	(1.13)	(1.18)	(1.18)	(1.15)	(1.13)	(1.12)	(1.15)
COMP	-2.36 *	-2.03	-2.45 **	-2.61 **	-2.24 *	-2.65 **	-2.57 *	-2.14	-2.57 *
	(1.27)	(1.26)	(1.23)	(1.30)	(1.28)	(1.26)	(1.40)	(1.39)	(1.42)
Adjusted R ²	0.236	0.236	0.272	0.211	0.216	0.247			
Centered R ²							0.234	0.241	0.271
N	261	261	261	261	261	261	261	261	261

Backup
Estimation Results 1st Stage excl. STDEVOIL

		2SLS		System GMM				
Specification					•			
	Model A	Model B	Model C	Model A	Model B	Model C		
CONSTANT	0.44	0.45	0.45	0.44	0.45	0.45		
	(0.31)	(0.31)	(0.31)	(0.28)	(0.28)	(0.28)		
RCAPSHARE	4.29 ***	4.29 ***	4.29 ***	4.29 ***	4.29 ***	4.29 ***		
	(0.36)	(0.36)	(0.35)	(0.36)	(0.36)	(0.36)		
UNC	-0.03	-0.03	-0.04	-0.03	-0.03	-0.04		
	(0.19)	(0.19)	(0.19)	(0.17)	(0.17)	(0.17)		
D2000	0.11	0.12	0.10	0.11	0.12	0.10		
	(0.15)	(0.15)	(0.15)	(0.16)	(0.16)	(0.16)		
ln(BILEXP1)	0.12 (0.14)			0.12 (0.13)				
ln(BILEXP2)		0.07 (0.06)			0.07 (0.06)			
RENEW			0.43 ** (0.21)			0.43 ** (0.22)		
LNGSHARE	0.02	0.01	0.05	0.02	0.01	0.05		
	(0.29)	(0.06)	(0.28)	(0.29)	(0.29)	(0.29)		
COMP	-0.11	-0.11	-0.06	-0.11	-0.11	-0.06		
	(0.29)	(0.30)	(0.30)	(0.25)	(0.25)	(0.25)		
SELFSUFF	-0.03	-0.04	-0.06	-0.03	-0.04	-0.06		
	(0.29)	(0.29)	(0.29)	(0.25)	(0.25)	(0.25)		
CAP	0.04 ***	0.03 ***	0.03 ***	0.04 ***	0.03 ***	0.03 ***		
	(0.00)	(0.00)	(0.00)	(0.01)	(0.01)	(0.01)		
TERMINALS	-0.03 ***	-0.03 ***	-0.03 ***	-0.03 ***	-0.03 ***	-0.03 ***		
	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)	(0.01)		
Adjusted R ²	0.455	0.456	0.462					
Centered R ²				0.473	0.475	0.481		
N	261	261	261	261	261	261		